If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44.1-4.9t^2=0
a = -4.9; b = 0; c = +44.1;
Δ = b2-4ac
Δ = 02-4·(-4.9)·44.1
Δ = 864.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{864.36}}{2*-4.9}=\frac{0-\sqrt{864.36}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{864.36}}{2*-4.9}=\frac{0+\sqrt{864.36}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 2/x-3+1/4=2 | | 5(x-0.9)=3(x+1.1) | | y+33=14 | | -14w+36=-21w-21 | | 5(x+5)+5=-5 | | 5-2(3x-4)=8(2x-1)=5 | | x2+14x+33=0 | | 9x+48=12 | | p−1/4⋅3=−56 | | 0.8(x–80)=25 | | b=78b-13 | | 8x-20=108 | | 6(1/3-1)=4x | | -8j=14=-2(4j-7) | | 8x+78=108 | | (x/2)+(x/3)=180 | | 4(x-4)=13÷104 | | 0.2(x+10)=15 | | -35x-6=50x-5 | | -1.6x-3.9=-6.9x+22.6 | | 78-8x=108 | | 7/5w=8/9 | | 4(x-4)=104÷1 | | 3.3q-2.9-2.5q=-0.2q-4.3 | | 4(x-4)=104÷13 | | 3/4t=6/7 | | 3x2+10x=8 | | a-2/5=1/2 | | 216=w*w | | -7/2x-3/5=5x-1/2 | | x−5=2x+6 | | ((x^2+4x-5)/x^2+3x-10))-((x^2+x-6)/(x^2+3x-10))=0 |